
Zinc and copper are essential minerals that our body doesn’t naturally produce. They come from food or supplementation. This vegan formula is easy to use, offers both minerals and a probiotic strain in a convenient one capsule a day solution.
50 mg zinc, 2 mg copper and probiotics all-in-one.
Dairy & gluten free. Non-GMO. 3 months supply.
The Combination Of Zinc With Copper & Probiotics
Zinc and copper are essential minerals that our body doesn’t naturally produce. They come from food or supplementation. This vegan formula is easy to use, offers both minerals and a probiotic strain in a convenient one capsule a day solution.
Zinc and copper are essential minerals that our body doesn’t naturally produce. They come from food or supplementation. This vegan formula is easy to use, offers both minerals and a probiotic strain in a convenient one capsule a day solution.
Medicinal Ingredients (per capsule): Bacillus subtilis (Whole cell CU1) 47 mg (2 billion CFU), Copper (Copper (II) bisglycinate) 2 mg, Zinc (Zinc bisglycinate) 50 mg.
Adults take 1 capsule 1 time per day. Take with food. Take at least 2 hours prior to or after taking medication or natural health products.
Zinc
Rondanelli M, Miccono A, Lamburghini S, et al. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. Evid Based Complement Alternat Med. 2018;2018:5813095. Published 2018 Apr 29. PMCID: PMC5949172
Singh M, Das RR. WITHDRAWN: Zinc for the common cold. Cochrane Database Syst Rev. 2015;2015(4):CD001364. Published 2015 Apr 30. PMCID: PMC6457799
Hulisz D. (2004). Efficacy of zinc against common cold viruses: an overview. Journal of the American Pharmacists Association : JAPhA, 44(5), 594–603. PMID: 15496046
Gammoh, N. Z., & Rink, L. (2017). Zinc in Infection and Inflammation. Nutrients, 9(6), 624. PMCID: PMC5490603
Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2007). Contribution of selected vitamins and trace elements to immune function. Annals of nutrition & metabolism, 51(4), 301–323. DOI: 10.1159/000107673
Sapkota, M., & Knoell, D. L. (2018). Essential Role of Zinc and Zinc Transporters in Myeloid Cell Function and Host Defense against Infection. Journal of immunology research, 2018, 4315140. DOI: 10.1155/2018/4315140
Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A., & Stefanidou, M. E. (2012). Zinc and human health: an update. Archives of toxicology, 86(4), 521–534. DOI: 10.1007/s00204-011-0775-1
Copper
Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Copper. [Updated 2017 Oct 30].
Harris, E. D., Rayton, J. K., Balthrop, J. E., DiSilvestro, R. A., & Garcia-de-Quevedo, M. (1980). Copper and the synthesis of elastin and collagen. Ciba Foundation symposium, 79, 163–182. DOI: 10.1002/9780470720622.ch9
Borkow G. Using Copper to Improve the Well-Being of the Skin. Curr Chem Biol. 2014;8(2):89-102. doi: PMCID: PMC4556990
Yu L, Liou IW, Biggins SW, et al. Copper Deficiency in Liver Diseases: A Case Series and Pathophysiological Considerations. Hepatol Commun. 2019;3(8):1159-1165. Published 2019 Jun 26. doi: 10.1002/hep4.1393
Klevay L. M. (2000). Dietary copper and risk of coronary heart disease. The American journal of clinical nutrition, 71(5), 1213–1214. DOI: 10.1093/ajcn/71.5.1213
Klevay L. M. (2000). Cardiovascular disease from copper deficiency--a history. The Journal of nutrition, 130(2S Suppl), 489S–492S. DOI: 10.1093/jn/130.2.489S
Percival S. S. (1998). Copper and immunity. The American journal of clinical nutrition, 67(5 Suppl), 1064S–1068S. DOI: 10.1093/ajcn/67.5.1064S
Mahdavi-Roshan M, Ebrahimi M, Ebrahimi A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin Cases Miner Bone Metab. 2015;12(1):18-21. PMCID: PMC4469220
Probiotics
Verna EC, Lucak S. Use of probiotics in gastrointestinal disorders: what to recommend?. Therap Adv Gastroenterol. 2010;3(5):307‐319. doi: 10.1177/1756283X10373814
Ritchie, Marina & Romanuk, Tamara. (2012). A Meta-Analysis of Probiotic Efficacy for Gastrointestinal Diseases. PloS one. 7. e34938. doi: 10.1371/journal.pone.0034938
Nancy Toedter Williams, Pharm.D., BCPS, BCNSP, Probiotics, American Journal of Health-System Pharmacy, Volume 67, Issue 6, 15 March 2010, Pages 449–458. DOI: 10.2146/ajhp090168
Salem I, Ramser A, Isham N, Ghannoum MA. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front Microbiol. 2018;9:1459. Published 2018 Jul 10. doi: 10.3389/fmicb.2018.01459
Ellis SR, Nguyen M, Vaughn AR, et al. The Skin and Gut Microbiome and Its Role in Common Dermatologic Conditions. Microorganisms. 2019;7(11):550. Published 2019 Nov 11. doi: 10.3390/microorganisms7110550
Szántó, M, Dózsa, A, Antal, D, Szabó, K, Kemény, L, Bai, P. Targeting the gut‐skin axis—Probiotics as new tools for skin disorder management? Exp Dermatol. 2019; 28: 1210– 1218. DOI: 10.1111/exd.14016
M. Rahmati Roudsari, R. Karimi, S. Sohrabvandi & A. M. Mortazavian (2015) Health Effects of Probiotics on the Skin, Critical Reviews in Food Science and Nutrition, 55:9, 1219-1240. DOI: 10.1080/10408398.2012.680078
Kechagia M, Basoulis D, Konstantopoulou S, et al. Health benefits of probiotics: a review. ISRN Nutr. 2013;2013:481651. Published 2013 Jan 2. PMID: 24959545
Di Stefano, M, MD; Miceli, E, MD; Armellini, E, MD; Missanelli, A, MD; Corazza, G R, MD Probiotics and Functional Abdominal Bloating, Journal of Clinical Gastroenterology: July 2004 - Volume 38 - Issue - p S102-S103 doi: 10.1097/01.mcg.0000128939.40458.25
Reid G. (2017). The development of probiotics for women's health. Canadian journal of microbiology, 63(4), 269–277. DOI: 10.1139/cjm-2016-0733
Rhayat L, Maresca M, Nicoletti C, et al. Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response. Front Immunol. 2019;10:564. Published 2019 Mar 29. DOI: 10.3389/fimmu.2019.00564
Yang, M., Zhu, G., Korza, G., Sun, X., Setlow, P., & Li, J. (2020). Engineering Bacillus subtilis as a Versatile and Stable Platform for Production of Nanobodies. Applied and environmental microbiology, 86(8), e02938-19. DOI: 10.1128/AEM.02938-19
Non-GMO. Vegan. Manufactured in a cGMP facility in the USA. 3rd party tested.